CRISPR-Cas Systems: Microbial Memory Meets Molecular Precision

CRISPR

FAQs

1. How does CRISPR differ from older gene-editing techniques like TALENs and zinc finger nucleases?

CRISPR is generally simpler, faster, and more versatile because it uses RNA guides rather than engineered proteins, making it easier to design and apply.

2. Are there any environmental risks associated with releasing CRISPR-edited organisms?

Potential risks include unintended ecological impacts or gene flow to wild populations; thus, strict regulations and risk assessments are essential.

3. How is CRISPR being integrated with artificial intelligence (AI) and machine learning?

AI helps optimize guide RNA design, predict off-target effects, and accelerate discovery of new Cas proteins for improved precision.

4. Can CRISPR technology be used to edit mitochondrial DNA?

Currently, editing mitochondrial DNA with CRISPR is challenging due to delivery and targeting issues, but research is ongoing to overcome these hurdles.

Reference

1. Jinek, M., Chylinski, K., Fonfara, I., et al. (2012). A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. science337(6096), 816-821.

2. Clokie, M. R., Millard, A. D., Letarov, A. V., et al. (2011). Phages in nature. Bacteriophage1(1), 31-45.

3. Summers, D. (2009). The biology of plasmids. John Wiley & Sons.

4. Manghwar, H., Lindsey, K., Zhang, X., et al. (2019). CRISPR/Cas system: recent advances and future prospects for genome editing. Trends in plant science24(12), 1102-1125.

5. Weng, Z., You, Z., Yang, J., et al. (2023). CRISPR‐cas biochemistry and CRISPR‐based molecular diagnostics. Angewandte Chemie International Edition62(17), e202214987.

6. Jeong, S. H., Lee, H. J., & Lee, S. J. (2023). Recent advances in CRISPR-Cas technologies for synthetic biology. Journal of Microbiology61(1), 13-36.

7. Azeez, S. S., Hamad, R. S., Hamad, B. K., et al. (2024). Advances in CRISPR-Cas technology and its applications: Revolutionising precision medicine. Frontiers in Genome Editing6, 1509924.

8. Kumar, S., Rymarquis, L. A., Ezura, H., et al. (2021). CRISPR-Cas in agriculture: Opportunities and challenges. Frontiers in Plant Science12, 672329.

9. Brazelton Jr, V. A., Zarecor, S., Wright, D. A., et al. (2015). A quick guide to CRISPR sgRNA design tools. GM crops & food6(4), 266-276.

10. Hillary, V. E., & Ceasar, S. A. (2023). A review on the mechanism and applications of CRISPR/Cas9/Cas12/Cas13/Cas14 proteins utilized for genome engineering. Molecular biotechnology65(3), 311-325.

11. Pickar-Oliver, A., & Gersbach, C. A. (2019). The next generation of CRISPR–Cas technologies and applications. Nature reviews Molecular cell biology20(8), 490-507.

12. Mali, P., Esvelt, K. M., & Church, G. M. (2013). Cas9 as a versatile tool for engineering biology. Nature methods10(10), 957-963.

13. Yan, F., Wang, W., & Zhang, J. (2019). CRISPR-Cas12 and Cas13: the lesser known siblings of CRISPR-Cas9. Cell biology and toxicology35, 489-492.

14. Badon, I. W., Oh, Y., Kim, H. J., et al. (2024). Recent application of CRISPR-Cas12 and OMEGA system for genome editing. Molecular Therapy32(1), 32-43.

15. Tran, M. H., Park, H., Nobles, C. L., et al. (2021). A more efficient CRISPR-Cas12a variant derived from Lachnospiraceae bacterium MA2020. Molecular Therapy Nucleic Acids24, 40-53.

16. Shigemori, H., Fujita, S., Tamiya, E., et al. (2023). Solid-Phase Collateral Cleavage System Based on CRISPR/Cas12 and Its Application toward Facile One-Pot Multiplex Double-Stranded DNA Detection. Bioconjugate Chemistry34(10), 1754-1765.

17. Fasching, C. L., Servellita, V., McKay, B., et al. (2022). COVID-19 variant detection with a high-fidelity CRISPR-Cas12 enzyme. Journal of Clinical Microbiology60(7), e00261-22.

18. Zhuang, S., Hu, T., Zhou, H., et al. (2024). CRISPR-HOLMES-based NAD+ detection. Frontiers in Bioengineering and Biotechnology12, 1355640.

19. Cox, D. B., Gootenberg, J. S., Abudayyeh, O. O., et al. (2017). RNA editing with CRISPR-Cas13. Science358(6366), 1019-1027.

20. Kellner, M. J., Koob, J. G., Gootenberg, J. S., et al. (2019). SHERLOCK: nucleic acid detection with CRISPR nucleases. Nature protocols14(10), 2986-3012.

21. Savage, D. F. (2019). Cas14: big advances from small CRISPR proteins. Biochemistry58(8), 1024-1025.

22. Harrington, L. B., Burstein, D., Chen, J. S., et al. (2018). Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science362(6416), 839-842.

23. Nieland, L., van Solinge, T. S., Cheah, P. S., et al. (2022). CRISPR-Cas knockout of miR21 reduces glioma growth. Molecular Therapy-Oncolytics25, 121-136.

24. Jang, H. K., Song, B., Hwang, G. H., et al. (2020). Current trends in gene recovery mediated by the CRISPR-Cas system. Experimental & Molecular Medicine52(7), 1016-1027.

25. Saber Sichani, A., Ranjbar, M., Baneshi, M., et al. (2023). A review on advanced CRISPR-based genome-editing tools: base editing and prime editing. Molecular Biotechnology65(6), 849-860.

26. Li, L., Duan, C., Weng, J., et al. (2022). A field-deployable method for single and multiplex detection of DNA or RNA from pathogens using Cas12 and Cas13. Science China Life Sciences, 1-10.

27. Wang, M., Chen, M., Wu, X., et al. (2023). CRISPR applications in cancer diagnosis and treatment. Cellular & molecular biology letters28(1), 73.

28. Bigini, F., Lee, S. H., Sun, Y. J., et al. (2023). Unleashing the potential of CRISPR multiplexing: Harnessing Cas12 and Cas13 for precise gene modulation in eye diseases. Vision research213, 108317.

29. Demirci, S., Leonard, A., Essawi, K., et al. (2021). CRISPR-Cas9 to induce fetal hemoglobin for the treatment of sickle cell disease. Molecular Therapy Methods & Clinical Development23, 276-285.

30. Wei, T., Sun, Y., Cheng, Q., et al. (2023). Lung SORT LNPs enable precise homology-directed repair mediated CRISPR/Cas genome correction in cystic fibrosis models. Nature communications14(1), 7322.

31. Katti, A., Diaz, B. J., Caragine, C. M., et al. (2022). CRISPR in cancer biology and therapy. Nature Reviews Cancer22(5), 259-279.

32. de Buhr, H., & Lebbink, R. J. (2018). Harnessing CRISPR to combat human viral infections. Current Opinion in Immunology54, 123-129.

33. Zhu, H., Li, C., & Gao, C. (2020). Applications of CRISPR–Cas in agriculture and plant biotechnology. Nature Reviews Molecular Cell Biology21(11), 661-677.

34. McCarty, N. S., Graham, A. E., Studená, L., et al. (2020). Multiplexed CRISPR technologies for gene editing and transcriptional regulation. Nature communications11(1), 1281.

35. Sen, D., & Mukhopadhyay, P. (2024). Antimicrobial resistance (AMR) management using CRISPR-Cas based genome editing. Gene and Genome Editing7, 100031.

36. Horodecka, K., & Düchler, M. (2021). CRISPR/Cas9: principle, applications, and delivery through extracellular vesicles. International Journal of Molecular Sciences22(11), 6072.

37. Roy, S. (2021). Immune responses to CRISPR-Cas protein. Progress in Molecular Biology and Translational Science178, 213-229.

38. Caplan, A. L., Parent, B., Shen, M., et al. (2015). No time to waste—the ethical challenges created by CRISPR: CRISPR/Cas, being an efficient, simple, and cheap technology to edit the genome of any organism, raises many ethical and regulatory issues beyond the use to manipulate human germ line cells. EMBO reports16(11), 1421-1426.

Pages: 1 2