FAQs
1. What is the primary advantage of Deep Learning over traditional AI in analyzing medical images?
Deep Learning uses artificial neural networks to process complex and unstructured data like images and pathology slides. Its superior pattern recognition capability allows it to achieve diagnostic accuracy often surpassing human experts, reducing diagnostic errors and interobserver variability.
2. How does AlphaFold impact the process of drug discovery?
AlphaFold revolutionized rational drug design by solving the critical challenge of protein folding prediction. This capability allows ML models to predict protein-ligand binding affinities and accelerate the screening of chemical libraries for promising drug candidates, thereby shortening timelines of drug discovery.
3. How does AI use multi-omics datasets for precision medicine?
Multi-omics datasets combine heterogeneous data like genomics, proteomics, metabolomics, and EHRs. AI synthesizes these to predict disease risk and drug response and allows treatments to be matched to tumor mutational profiles or patient lifestyle for truly personalized care.
Reference
1. Ertel, W. (2024). Introduction to artificial intelligence. Springer Nature.
2. Alpaydin, E. (2021). Machine learning. MIT press.
3. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436-444.
4. Väänänen, A., Haataja, K., Vehviläinen-Julkunen, K., et al. (2021). AI in healthcare: A narrative review. F1000Research, 10, 6.
5. Schork, N. J. (2019). Artificial intelligence and personalized medicine. In Precision medicine in Cancer therapy (pp. 265-283). Cham: Springer International Publishing, 178.
6. Qureshi, R., Irfan, M., Gondal, T. M., et al. (2023). AI in drug discovery and its clinical relevance. Heliyon, 9(7).
7. Pierre, K., Haneberg, A. G., Kwak, S., et al. (2023, April). Applications of artificial intelligence in the radiology roundtrip: process streamlining, workflow optimization, and beyond. In Seminars in Roentgenology (Vol. 58, No. 2, pp. 158-169). WB Saunders.
8. Akhter, Y., Singh, R., & Vatsa, M. (2023). AI-based radiodiagnosis using chest X-rays: A review. Frontiers in big data, 6, 1120989.
9. Wang, B., Jin, S., Yan, Q., et al. (2021). AI-assisted CT imaging analysis for COVID-19 screening: Building and deploying a medical AI system. Applied soft computing, 98, 106897.
10. Fransen, S. J., Roest, C., Simonis, F. F., et al. (2025). The scientific evidence of commercial AI products for MRI acceleration: a systematic review. European radiology, 35, 1-11.
11. Drukker, L., Noble, J. A., & Papageorghiou, A. T. (2020). Introduction to artificial intelligence in ultrasound imaging in obstetrics and gynecology. Ultrasound in Obstetrics & Gynecology, 56(4), 498-505.
12. Försch, S., Klauschen, F., Hufnagl, P., et al. (2021). Artificial intelligence in pathology. Deutsches Ärzteblatt International, 118(12), 199.
13. Tran, K. A., Kondrashova, O., Bradley, A., et al. (2021). Deep learning in cancer diagnosis, prognosis and treatment selection. Genome medicine, 13(1), 152.
14. Krittanawong, C., Johnson, K. W., Rosenson, R. S., et al. (2019). Deep learning for cardiovascular medicine: a practical primer. European heart journal, 40(25), 2058-2073.
15. Valliani, A. A. A., Ranti, D., & Oermann, E. K. (2019). Deep learning and neurology: a systematic review. Neurology and therapy, 8(2), 351-365.
16. Kalmet, P. H., Sanduleanu, S., Primakov, S., et al. (2020). Deep learning in fracture detection: a narrative review. Acta orthopaedica, 91(2), 215-220.
17. Theodosiou, A. A., & Read, R. C. (2023). Artificial intelligence, machine learning and deep learning: Potential resources for the infection clinician. Journal of Infection, 87(4), 287-294.
18. Kyrychenko, I., Tereshchenko, G., Kozak, D., et al. (2025, April). Evaluation of Deep Learning Systems in Medical Diagnosis. In 2025 IEEE Open Conference of Electrical, Electronic and Information Sciences (eStream) (pp. 1-6). IEEE.
19. Glass, B., Vandenberghe, M. E., Chavali, S. T., et al. (2025). Deployment of a Machine Learning Algorithm in a Real-World Cohort for Quality Control Monitoring of Human Epidermal Growth Factor-2–Stained Clinical Specimens in Breast Cancer. Archives of Pathology & Laboratory Medicine, 149(8), 751-760.
20. Teshale, A. B., Htun, H. L., Vered, M., et al. (2024). A systematic review of artificial intelligence models for Time-to-Event outcome applied in cardiovascular disease risk prediction. Journal of medical systems, 48(1), 68.
21. Adam, G., Rampášek, L., Safikhani, Z., et al. (2020). Machine learning approaches to drug response prediction: challenges and recent progress. NPJ precision oncology, 4(1), 19.
22. Basile, A. O., Yahi, A., & Tatonetti, N. P. (2019). Artificial intelligence for drug toxicity and safety. Trends in pharmacological sciences, 40(9), 624-635.
23. Shimizu, H., & Nakayama, K. I. (2020). Artificial intelligence in oncology. Cancer science, 111(5), 1452-1460.
24. Poweleit, E. A., Vinks, A. A., & Mizuno, T. (2023). Artificial intelligence and machine learning approaches to facilitate therapeutic drug management and model-informed precision dosing. Therapeutic drug monitoring, 45(2), 143-150.
25. Xie, Y., Lu, L., Gao, F., et al. (2021). Integration of artificial intelligence, blockchain, and wearable technology for chronic disease management: a new paradigm in smart healthcare. Current medical science, 41(6), 1123-1133.
26. Ahmed, A., Aziz, S., Qidwai, U., et al. (2023). Performance of artificial intelligence models in estimating blood glucose level among diabetic patients using non-invasive wearable device data. Computer Methods and Programs in Biomedicine Update, 3, 100094.
27. Lee, S., Chu, Y., Ryu, J., et al. (2022). Artificial intelligence for detection of cardiovascular-related diseases from wearable devices: a systematic review and meta-analysis. Yonsei medical journal, 63(Suppl), S93.
28. Siebenmorgen, T., Menezes, F., Benassou, S., et al. (2024). MISATO: machine learning dataset of protein–ligand complexes for structure-based drug discovery. Nature computational science, 4(5), 367-378.
29. Desai, D., Kantliwala, S. V., Vybhavi, J., et al. (2024). Review of AlphaFold 3: transformative advances in drug design and therapeutics. Cureus, 16(7), e63646.
30. Askin, S., Burkhalter, D., Calado, G., et al. (2023). Artificial intelligence applied to clinical trials: opportunities and challenges. Health and technology, 13(2), 203-213.
31. Bates, D. W., Levine, D., Syrowatka, A., et al. (2021). The potential of artificial intelligence to improve patient safety: a scoping review. NPJ digital medicine, 4(1), 54.
32. Kok Wah, J. N. (2025). AI-driven robotic surgery in oncology: advancing precision, personalization, and patient outcomes. Journal of Robotic Surgery, 19(1), 382.
33. Laut, J., Porfiri, M., & Raghavan, P. (2016). The present and future of robotic technology in rehabilitation. Current physical medicine and rehabilitation reports, 4(4), 312-319.
34. Marescotti, D., Narayanamoorthy, C., Bonjour, F., et al. (2022). AI-driven laboratory workflows enable operation in the age of social distancing. SLAS technology, 27(3), 195-203.
35. Wang, L., Zhang, Z., Wang, D., et al. (2023). Human-centered design and evaluation of AI-empowered clinical decision support systems: a systematic review. Frontiers in Computer Science, 5, 1187299.
36. Chakraborty, C., Pal, S., Bhattacharya, M., et al. (2023). Overview of Chatbots with special emphasis on artificial intelligence-enabled ChatGPT in medical science. Frontiers in Artificial Intelligence, 6, 1237704.
37. Chan, J., Nsumba, S., Wortsman, M., et al. (2024). Detecting clinical medication errors with AI enabled wearable cameras. NPJ Digital Medicine, 7(1), 287.
38. Sun, H., Wang, W., He, F., et al. (2023). An AI-based image quality control framework for knee radiographs. Journal of Digital Imaging, 36(5), 2278-2289.
39. Ni, Y., Aghamirzaie, D., Elmarakeby, H., et al. (2016). A machine learning approach to predict gene regulatory networks in seed development in Arabidopsis. Frontiers in plant science, 7, 1936.
40. Casadio, R., Martelli, P. L., & Savojardo, C. (2022). Machine learning solutions for predicting protein–protein interactions. Wiley Interdisciplinary Reviews: Computational Molecular Science, 12(6), e1618.
41. Kim, M. G., Go, M. J., Kang, S. H., et al. (2025). Revolutionizing CRISPR technology with artificial intelligence. Experimental & Molecular Medicine, 57, 1-13.
42. Nti, E. K., Cobbina, S. J., Attafuah, E. E., et al. (2022). Environmental sustainability technologies in biodiversity, energy, transportation and water management using artificial intelligence: A systematic review. Sustainable Futures, 4, 100068.
43. Baranwal, M., Magner, A., Elvati, P., et al. (2019). A deep learning architecture for metabolic pathway prediction, 36(8), 2547-2553.
44. Bunne, C., Roohani, Y., Rosen, Y., et al. (2024). How to build the virtual cell with artificial intelligence: Priorities and opportunities. Cell, 187(25), 7045-7063.
45. Zeng, D., Cao, Z., & Neill, D. B. (2021). Artificial intelligence–enabled public health surveillance—from local detection to global epidemic monitoring and control. In Artificial intelligence in medicine (pp. 437-453). Academic Press.
46. Lv, C., Guo, W., Yin, X., et al. (2024). Innovative applications of artificial intelligence during the COVID-19 pandemic. Infectious Medicine, 3(1), 100095.
47. Baker, A., Perov, Y., Middleton, K., et al. (2020). A comparison of artificial intelligence and human doctors for the purpose of triage and diagnosis. Frontiers in artificial intelligence, 3, 543405.
48. Elliott, D., & Soifer, E. (2022). AI technologies, privacy, and security. Frontiers in Artificial Intelligence, 5, 826737.
49. Hassija, V., Chamola, V., Mahapatra, A., et al. (2024). Interpreting black-box models: a review on explainable artificial intelligence. Cognitive Computation, 16(1), 45-74.
50. Fletcher, R. R., Nakeshimana, A., & Olubeko, O. (2021). Addressing fairness, bias, and appropriate use of artificial intelligence and machine learning in global health. Frontiers in artificial intelligence, 3, 561802.
51. Danks, D., & Trusilo, D. (2022). The challenge of ethical interoperability. Digital Society, 1(2), 11.
52. Moulaei, K., Akhlaghpour, S., & Fatehi, F. (2025). Patient consent for the secondary use of health data in artificial intelligence (AI) models: A scoping review. International Journal of Medical Informatics, 105872.
53. Feng, J., Phillips, R. V., Malenica, I., et al. (2022). Clinical artificial intelligence quality improvement: towards continual monitoring and updating of AI algorithms in healthcare. NPJ digital medicine, 5(1), 66.
54. Donadello, I., & Dragoni, M. (2022). AI-enabled persuasive personal health assistant. Social Network Analysis and Mining, 12(1), 106.
55. Khakpaki, A. (2025). Advancements in artificial intelligence transforming medical education: a comprehensive overview. Medical Education Online, 30(1), 2542807.
56. Pierdicca, R., Tonetto, F., Paolanti, M., et al. (2024). DeepReality: An open source framework to develop AI-based augmented reality applications. Expert Systems with Applications, 249, 123530.
57. Kreuzer, T., Papapetrou, P., & Zdravkovic, J. (2024). Artificial intelligence in digital twins—A systematic literature review. Data & Knowledge Engineering, 151, 102304.
58. Edrees, H., Song, W., Syrowatka, A., et al. (2022). Intelligent telehealth in pharmacovigilance: a future perspective. Drug safety, 45(5), 449-458.
59. Lipkova, J., Chen, R. J., Chen, B., et al. (2022). Artificial intelligence for multimodal data integration in oncology. Cancer cell, 40(10), 1095-1110.
