Disease Modeling: Recreating Illness to Conquer It

Disease Modeling

FAQs

1. How long does it typically take to develop a new disease model?

The time required to develop a new disease model varies widely depending on the disease’s complexity and the specific research question. Simpler in vitro or in silico models may take a few months, while complex in vivo animal models can take several years, especially if genetic engineering or extensive validation is involved.

2. How do regulatory bodies view data from disease models in the drug approval process?

Regulatory bodies, like the FDA, are increasingly recognizing the value of advanced disease models, especially human-relevant in vitro and in silico models, as they can reduce reliance on animal testing and accelerate drug development. However, these models typically serve as supporting evidence rather than replacing human clinical trials.

3. Can disease models predict rare diseases, and what are the challenges?

Yes, disease models can be developed for rare diseases, but it’s often more challenging, primarily due to the scarcity of patient data and biological samples, which are crucial for developing and validating robust models. Collaboration and shared resources are key to progress in this field.

Reference

1. Lauretti, E., & Praticò, D. (2020). Alzheimer’s disease: Phenotypic approaches using disease models and the targeting of tau protein. Expert opinion on therapeutic targets24(4), 319-330.

2. Sebastian-Leon, P., Vidal, E., Minguez, P., et al. (2014). Understanding disease mechanisms with models of signaling pathway activities. BMC systems biology8(1), 121.

3. Marei, H. E., Khan, M. U. A., & Hasan, A. (2023). Potential use of iPSCs for disease modeling, drug screening, and cell-based therapy for Alzheimer’s disease. Cellular & Molecular Biology Letters28(1), 98.

4. Jack, C. R., & Holtzman, D. M. (2013). Biomarker modeling of Alzheimer’s disease. Neuron80(6), 1347-1358.

5. Hoes, M. F., Bomer, N., & Meer, P. (2019). Concise review: the current state of human in vitro cardiac disease modeling: a focus on gene editing and tissue engineering. Stem cells translational medicine8(1), 66-74.

6. Stoddard-Bennett, T., & Pera, R. R. (2020). Stem cell therapy for Parkinson’s disease: safety and modeling. Neural Regeneration Research15(1), 36-40.

7. Centeno, E. G., Cimarosti, H., & Bithell, A. (2018). 2D versus 3D human induced pluripotent stem cell-derived cultures for neurodegenerative disease modelling. Molecular neurodegeneration13(1), 27.

8. Dutta, D., Heo, I., & Clevers, H. (2017). Disease modeling in stem cell-derived 3D organoid systems. Trends in molecular medicine23(5), 393-410.

9. Griffin, K. H., Fok, S. W., & Kent Leach, J. (2022). Strategies to capitalize on cell spheroid therapeutic potential for tissue repair and disease modeling. NPJ Regenerative Medicine7(1), 70.

10. Ma, X., Liu, J., Zhu, W., et al. (2018). 3D bioprinting of functional tissue models for personalized drug screening and in vitro disease modeling. Advanced drug delivery reviews132, 235-251.

11. Jeziorski, J., Brandt, R., Evans, J. H., et al. (2023, July). Brain organoids, consciousness, ethics and moral status. In Seminars in cell & developmental biology (Vol. 144, pp. 97-102). Academic Press.

12. Davaapil, H., Shetty, D. K., & Sinha, S. (2020). Aortic “disease-in-a-dish”: mechanistic insights and drug development using iPSC-based disease modeling. Frontiers in Cell and Developmental Biology8, 550504.

13. Myers, A., & McGonigle, P. (2019). Overview of transgenic mouse models for Alzheimer’s disease. Current protocols in neuroscience89(1), e81.

14. da Silva-Buttkus, P., Spielmann, N., Klein-Rodewald, T., et al. (2023). Knockout mouse models as a resource for the study of rare diseases. Mammalian Genome34(2), 244-261.

15. Chapeau, E. A., Mandon, E., Gill, J., et al. (2019). A conditional inducible JAK2V617F transgenic mouse model reveals myeloproliferative disease that is reversible upon switching off transgene expression. PLoS One14(10), e0221635.

16. Chuprin, J., Buettner, H., Seedhom, M. O., et al. (2023). Humanized mouse models for immuno-oncology research. Nature Reviews Clinical Oncology20(3), 192-206.

17. Liguori, G. R., Jeronimus, B. F., de Aquinas Liguori, T. T., et al. (2017). Ethical issues in the use of animal models for tissue engineering: reflections on legal aspects, moral theory, three rs strategies, and harm–benefit analysis. Tissue Engineering Part C: Methods23(12), 850-862.

18. Patton, E. E., Zon, L. I., & Langenau, D. M. (2021). Zebrafish disease models in drug discovery: from preclinical modelling to clinical trials. Nature reviews Drug discovery20(8), 611-628.

19. Drawert, B., Griesemer, M., Petzold, L. R., et al. (2017). Using stochastic epidemiological models to evaluate conservation strategies for endangered amphibians. Journal of the Royal Society Interface14(133), 20170480.

20. Caldwell, K. A., Willicott, C. W., & Caldwell, G. A. (2020). Modeling neurodegeneration in Caenorhabditis elegans. Disease Models & Mechanisms13(10), dmm046110.

21. Aryal, B., & Lee, Y. (2019). Disease model organism for Parkinson disease: Drosophila melanogaster. BMB reports52(4), 250.

22. Sanchez de la Nava, A. M., Arenal, Á., Fernández-Avilés, F., et al. (2021). Artificial intelligence-driven algorithm for drug effect prediction on atrial fibrillation: An in silico population of models approach. Frontiers in physiology12, 768468.

23. Tiwari, K., Kananathan, S., Roberts, M. G., et al. (2021). Reproducibility in systems biology modelling. Molecular systems biology17(2), e9982.

24. Wang, Z., Butner, J. D., Kerketta, R., et al. (2015, February). Simulating cancer growth with multiscale agent-based modeling. In Seminars in cancer biology (Vol. 30, pp. 70-78). Academic Press.

25. Chiacchio, F., Pennisi, M., Russo, G., et al. (2014). Agent‐based modeling of the immune system: NetLogo, a promising framework. BioMed research international2014(1), 907171.

26. Sung, J. H., Esch, M. B., & Shuler, M. L. (2010). Integration of in silico and in vitro platforms for pharmacokinetic–pharmacodynamic modeling. Expert opinion on drug metabolism & toxicology6(9), 1063-1081.

27. McMahon, A., & Robb, N. C. (2020). Reinfection with SARS-CoV-2: Discrete SIR (susceptible, infected, recovered) modeling using empirical infection data. JMIR public health and surveillance6(4), e21168.

28. Robertson, J., Yoshida, C., Kruczkiewicz, P., et al. (2018). Comprehensive assessment of the quality of Salmonella whole genome sequence data available in public sequence databases using the Salmonella in silico Typing Resource (SISTR). Microbial genomics4(2), e000151.

29. Johansson, U., Sönströd, C., Norinder, U., et al. (2011). Trade-off between accuracy and interpretability for predictive in silico modeling. Future medicinal chemistry3(6), 647-663.

30. Richter, M., Emden, D., Leenings, R., et al. (2025). Generalizability of clinical prediction models in mental health. Molecular Psychiatry, 30, 3632–3639.

31. Tapper, E. B., & Chhatwal, J. (2024). The need to revise the model for face validity. Official journal of the American College of Gastroenterology| ACG119(6), 1205.

32. L Burrows, E., & J Hannan, A. (2013). Towards environmental construct validity in animal models of CNS disorders: optimizing translation of preclinical studies. CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders)12(5), 587-592.

33. Scannell, J. W., Bosley, J., Hickman, J. A., et al. (2022). Predictive validity in drug discovery: what it is, why it matters and how to improve it. Nature Reviews Drug Discovery21(12), 915-931.

34. Golriz Khatami, S., Robinson, C., Birkenbihl, C., et al. (2020). Challenges of integrative disease modeling in Alzheimer’s disease. Frontiers in molecular biosciences6, 158.

Pages: 1 2