FAQ
1. Can stress or anxiety affect my ROS levels?
Yes, chronic psychological stress and anxiety have been linked to increased production of ROS in the body, which may contribute to cellular damage over time.
2. How can I check my body’s oxidative stress levels?
Direct testing is complex and typically involves specialized medical tests measuring biomarkers of oxidative damage, which are not commonly part of routine checkups.
3. Is cooking method important in reducing oxidative stress?
Certain methods such as grilling or frying at high temperatures can generate harmful compounds that may increase oxidative stress, while steaming or boiling are gentler.
Reference
1. Ray, P. D., Huang, B. W., & Tsuji, Y. (2012). Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cellular signalling, 24(5), 981-990.
2. Thannickal, V. J., & Fanburg, B. L. (2000). Reactive oxygen species in cell signaling. American Journal of Physiology-Lung Cellular and Molecular Physiology, 279(6), L1005-L1028.
3. Selman, C., Blount, J. D., Nussey, D. H., et al. (2012). Oxidative damage, ageing, and life-history evolution: where now?. Trends in ecology & evolution, 27(10), 570-577.
4. Liu, Z., Ren, Z., Zhang, J., et al. (2018). Role of ROS and nutritional antioxidants in human diseases. Frontiers in physiology, 9, 360203.
5. Panth, N., Paudel, K. R., & Parajuli, K. (2016). Reactive oxygen species: a key hallmark of cardiovascular disease. Advances in medicine, 2016(1), 9152732.
6. Li, R., Jia, Z., & Trush, M. A. (2016). Defining ROS in biology and medicine. Reactive oxygen species (Apex, NC), 1(1), 9.
7. Kowaltowski, A. J., de Souza-Pinto, N. C., Castilho, R. F., et al. (2009). Mitochondria and reactive oxygen species. Free Radical Biology and Medicine, 47(4), 333-343.
8. Zhao, R. Z., Jiang, S., Zhang, L., et al. (2019). Mitochondrial electron transport chain, ROS generation and uncoupling. International Journal of Molecular Medicine, 44(1), 3.
9. Slauch, J. M. (2011). How does the oxidative burst of macrophages kill bacteria? Still an open question. Molecular microbiology, 80(3), 580-583.
10. Bortolotti, M., Polito, L., Battelli, M. G., et al. (2021). Xanthine oxidoreductase: One enzyme for multiple physiological tasks. Redox biology, 41, 101882.
11. Chattopadhyay, R., Tinnikov, A., Dyukova, E., et al. (2015). 12/15-Lipoxygenase-dependent ROS production is required for diet-induced endothelial barrier dysfunction. Journal of lipid research, 56(3), 562-577.
12. Schrader, M., & Fahimi, H. D. (2006). Peroxisomes and oxidative stress. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1763(12), 1755-1766.
13. Zeeshan, H. M. A., Lee, G. H., Kim, H. R., et al. (2016). Endoplasmic Reticulum Stress and Associated ROS. International Journal of Molecular Sciences, 17(3), 327.
14. Lodovici, M., & Bigagli, E. (2011). Oxidative stress and air pollution exposure. Journal of toxicology, 2011(1), 487074.
15. Wang, Y., Noman, A., Zhang, C., et al. (2024). Effect of fish-heavy metals contamination on the generation of reactive oxygen species and its implications on human health: a review. Frontiers in Marine Science, 11, 1500870.
16. Wei, J., Wang, B., Wang, H., et al. (2019). Radiation‐induced normal tissue damage: oxidative stress and epigenetic mechanisms. Oxidative medicine and cellular longevity, 2019(1), 3010342.
17. Zięba, S., Maciejczyk, M., & Zalewska, A. (2022). Ethanol-and cigarette smoke-related alternations in oral redox homeostasis. Frontiers in Physiology, 12, 793028.
18. Yu, W., Tu, Y., Long, Z., et al. (2022). Reactive oxygen species bridge the gap between chronic inflammation and tumor development. Oxidative medicine and cellular longevity, 2022(1), 2606928.
19. Mittler, R. (2017). ROS are good. Trends in plant science, 22(1), 11-19.
20. Redza-Dutordoir, M., & Averill-Bates, D. A. (2016). Activation of apoptosis signalling pathways by reactive oxygen species. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1863(12), 2977-2992.
21. Krylatov, A. V., Maslov, L. N., Voronkov, N. S., et al. (2018). Reactive oxygen species as intracellular signaling molecules in the cardiovascular system. Current cardiology reviews, 14(4), 290-300.
22. Su, L. J., Zhang, J. H., Gomez, H., et al. (2019). Reactive oxygen species‐induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxidative medicine and cellular longevity, 2019(1), 5080843.
23. Cecarini, V., Gee, J., Fioretti, E., et al. (2007). Protein oxidation and cellular homeostasis: Emphasis on metabolism. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1773(2), 93-104.
24. Wurtmann, E. J., & Wolin, S. L. (2009). RNA under attack: cellular handling of RNA damage. Critical reviews in biochemistry and molecular biology, 44(1), 34-49.
25. d’Ischia, M., Manini, P., & Napolitano, A. (2006). Oxidative damage to carbohydrates and amino acids. In Oxidative Stress, Disease and Cancer (pp. 333-356). World Scientific.
26. Wang, Y., Branicky, R., Noë, A., et al. (2018). Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. The Journal of Cell Biology, 217(6), 1915.
27. Heck, D. E., Shakarjian, M., Kim, H. D., et al. (2010). Mechanisms of oxidant generation by catalase. Annals of the new York Academy of Sciences, 1203(1), 120-125.
28. Kinowaki, Y., Kurata, M., Ishibashi, S., et al. (2018). Glutathione peroxidase 4 overexpression inhibits ROS-induced cell death in diffuse large B-cell lymphoma. Laboratory Investigation, 98(5), 609-619.
29. Bains, V. K., & Bains, R. (2015). The antioxidant master glutathione and periodontal health. Dental research journal, 12(5), 389.
30. Stinefelt, B., Leonard, S. S., Blemings, K. P., et al. (2005). Free radical scavenging, DNA protection, and inhibition of lipid peroxidation mediated by uric acid. Annals of Clinical & Laboratory Science, 35(1), 37-45.
31. Mancuso, C., Pani, G., & Calabrese, V. (2006). Bilirubin: an endogenous scavenger of nitric oxide and reactive nitrogen species. Redox Report, 11(5), 207-213.
32. Kim, K. H., Lee, B., Kim, Y. R., et al. (2018). Evaluating protective and therapeutic effects of alpha-lipoic acid on cisplatin-induced ototoxicity. Cell death & disease, 9(8), 827.
33. Islamian, J. P., & Mehrali, H. (2015). Lycopene as a carotenoid provides radioprotectant and antioxidant effects by quenching radiation-induced free radical singlet oxygen: an overview. Cell Journal (Yakhteh), 16(4), 386.
34. Hussain, T., Tan, B., Yin, Y., et al. (2016). Oxidative stress and inflammation: what polyphenols can do for us?. Oxidative medicine and cellular longevity, 2016(1), 7432797.
35. Guo, C. H., Liu, P. J., Hsia, S., et al. (2011). Role of certain trace minerals in oxidative stress, inflammation, CD4/CD8 lymphocyte ratios and lung function in asthmatic patients. Annals of clinical biochemistry, 48(4), 344-351.
36. Liguori, I., Russo, G., Curcio, F., et al. (2018). Oxidative stress, aging, and diseases. Clinical interventions in aging, 13, 757-772.
37. Niedzielska, E., Smaga, I., Gawlik, M., et al. (2016). Oxidative stress in neurodegenerative diseases. Molecular neurobiology, 53(6), 4094-4125.
38. Elahi, M. M., Kong, Y. X., & Matata, B. M. (2009). Oxidative stress as a mediator of cardiovascular disease. Oxidative medicine and cellular longevity, 2(5), 259-269.
39. Sharma, V., Collins, L. B., Chen, T. H., et al. (2016). Oxidative stress at low levels can induce clustered DNA lesions leading to NHEJ mediated mutations. Oncotarget, 7(18), 25377.
40. Čolak, E., & Pap, D. (2021). The role of oxidative stress in the development of obesity and obesity-related metabolic disorders. Journal of Medical Biochemistry, 40(1), 1.
41. Quiñonez-Flores, C. M., González-Chávez, S. A., Del Rio Najera, D., et al. (2016). Oxidative stress relevance in the pathogenesis of the rheumatoid arthritis: a systematic review. BioMed research international, 2016(1), 6097417.
42. Tian, T., Wang, Z., & Zhang, J. (2017). Pathomechanisms of oxidative stress in inflammatory bowel disease and potential antioxidant therapies. Oxidative medicine and cellular longevity, 2017(1), 4535194.
43. Žarković, M. (2012). The role of oxidative stress on the pathogenesis of Graves′ disease. Journal of thyroid research, 2012(1), 302537.
44. Ling, X. C., & Kuo, K. L. (2018). Oxidative stress in chronic kidney disease. Renal Replacement Therapy, 4(1), 1-9.
45. Thimmulappa, R. K., Chattopadhyay, I., & Rajasekaran, S. (2019). Oxidative stress mechanisms in the pathogenesis of environmental lung diseases. In Oxidative Stress in Lung Diseases: Volume 2 (pp. 103-137). Singapore: Springer Singapore.
46. Pinazo-Durán, M. D., Gallego-Pinazo, R., Garcia-Medina, J. J., et al. (2014). Oxidative stress and its downstream signaling in aging eyes. Clinical interventions in aging, 9, 637-652.
47. Man, A. W., Li, H., & Xia, N. (2020). Impact of lifestyles (diet and exercise) on vascular health: oxidative stress and endothelial function. Oxidative medicine and cellular longevity, 2020(1), 1496462.
48. Epel, E., Daubenmier, J., Moskowitz, J. T., et al. (2009). Can meditation slow rate of cellular aging? Cognitive stress, mindfulness, and telomeres. Annals of the new York Academy of Sciences, 1172(1), 34-53.
49. Tanvetyanon, T., & Bepler, G. (2008). Beta‐carotene in multivitamins and the possible risk of lung cancer among smokers versus former smokers: a meta‐analysis and evaluation of national brands. Cancer, 113(1), 150-157.
50. Wang, J., Sun, D., Huang, L., et al. (2021). Targeting reactive oxygen species capacity of tumor cells with repurposed drug as an anticancer therapy. Oxidative medicine and cellular longevity, 2021(1), 8532940.
51. Margaritelis, N. V., Paschalis, V., Theodorou, A. A., et al. (2018). Antioxidants in personalized nutrition and exercise. Advances in Nutrition, 9(6), 813-823.
52. Yang, F., Wendusubilige, Kong, J., Zong, Y., et al. (2023). Identifying oxidative stress-related biomarkers in idiopathic pulmonary fibrosis in the context of predictive, preventive, and personalized medicine using integrative omics approaches and machine-learning strategies. EPMA Journal, 14(3), 417-442.
53. Rodriguez, R., & Redman, R. (2005). Balancing the generation and elimination of reactive oxygen species. Proceedings of the National Academy of Sciences, 102(9), 3175-3176.
