FAQs
1. Is phage therapy expensive?
Currently, the costs associated with phage therapy are variable and often expensive due to its experimental nature and individualized approach, especially under compassionate use. However, the costs are expected to decrease, as research advances, manufacturing scales, and regulatory pathways become clearer.
2. Can phages be used to prevent infections, not just treat them?
In agriculture and food safety, phages are already used to prevent bacterial contamination. This demonstrates their potential beyond just treating existing infections. Currently, phages are also being explored for prophylactic (preventive) use, for example, to determine if their topical use in high-risk areas (like burn wounds) can prevent biofilm formation.
3. Can phages affect human cells?
No, bacteriophages are highly specific to bacteria, and they lack the mechanisms to infect or replicate within human cells. This specificity ensures that phage therapy doesn’t directly harm the patient’s cells or beneficial microbiome.
Reference
1. Hatfull, G. F., Dedrick, R. M., & Schooley, R. T. (2022). Phage therapy for antibiotic-resistant bacterial infections. Annual review of medicine, 73(1), 197-211.
2. Taylor, M. W., & Taylor, M. W. (2014). The discovery of bacteriophage and the d’Herelle controversy. Viruses and man: A history of interactions, 53-61.
3. Kutter, E. M., Kuhl, S. J., & Abedon, S. T. (2015). Re-establishing a place for phage therapy in western medicine. Future microbiology, 10(5), 685-688.
4. Navarro, F., & Muniesa, M. (2017). Phages in the human body. Frontiers in microbiology, 8, 566.
5. Ahmad, T. A., El Houjeiry, S., Kanj, S. S., et al. (2024). From Forgotten Cure to Modern Medicine: The Resurgence of Bacteriophage Therapy. Journal of Global Antimicrobial Resistance. 39, 231-239.
6. Pfeifer, E., Bonnin, R. A., & Rocha, E. P. (2022). Phage-plasmids spread antibiotic resistance genes through infection and lysogenic conversion. MBio, 13(5), e01851-22.
7. Poullain, V., Gandon, S., Brockhurst, M. A., et al. (2008). The evolution of specificity in evolving and coevolving antagonistic interactions between a bacteria and its phage. evolution, 62(1), 1-11.
8. Bayat, F., Hilal, A., Thirugnanasampanthar, M., et al. (2024). High throughput platform technology for rapid target identification in personalized phage therapy. Nature Communications, 15(1), 5626.
9. Gibson, S. B., Green, S. I., Liu, C. G., et al. (2019). Constructing and characterizing bacteriophage libraries for phage therapy of human infections. Frontiers in microbiology, 10, 2537.
10. Abedon, S. T., & Thomas-Abedon, C. (2010). Phage therapy pharmacology. Current pharmaceutical biotechnology, 11(1), 28-47.
11. Azeredo, J., García, P., & Drulis-Kawa, Z. (2021). Targeting biofilms using phages and their enzymes. Current Opinion in Biotechnology, 68, 251-261.
12. Pires, D. P., Melo, L. D., & Azeredo, J. (2021). Understanding the complex phage-host interactions in biofilm communities. Annual Review of Virology, 8(1), 73-94.
13. Manohar, P., Loh, B., Nachimuthu, R., et al. (2024). Phage-antibiotic combinations to control Pseudomonas aeruginosa–Candida two-species biofilms. Scientific Reports, 14(1), 9354.
14. Federici, S., Nobs, S. P., & Elinav, E. (2021). Phages and their potential to modulate the microbiome and immunity. Cellular & molecular immunology, 18(4), 889-904.
15. Ryan, E. M., Gorman, S. P., Donnelly, R. F., et al. (2011). Recent advances in bacteriophage therapy: how delivery routes, formulation, concentration and timing influence the success of phage therapy. Journal of Pharmacy and Pharmacology, 63(10), 1253-1264.
16. Vale, P. F., & Little, T. J. (2010). CRISPR-mediated phage resistance and the ghost of coevolution past. Proceedings of the Royal Society B: Biological Sciences, 277(1691), 2097-2103.
17. Li, C., Shi, T., Sun, Y., et al. (2022). A novel method to create efficient phage cocktails via use of phage-resistant bacteria. Applied and environmental microbiology, 88(6), e02323-21.
18. Nang, S. C., Lin, Y. W., Fabijan, A. P., et al. (2023). Pharmacokinetics/pharmacodynamics of phage therapy: a major hurdle to clinical translation. Clinical Microbiology and Infection, 29(6), 702-709.
19. Zagaliotis, P., Michalik-Provasek, J., Gill, J. J., et al. (2022). Therapeutic bacteriophages for Gram-negative bacterial infections in animals and humans. Pathogens and Immunity, 7(2), 1.
20. Luong, T., Salabarria, A. C., Edwards, R. A., et al. (2020). Standardized bacteriophage purification for personalized phage therapy. Nature protocols, 15(9), 2867-2890.
21. Yang, Q., Le, S., Zhu, T., et al. (2023). Regulations of phage therapy across the world. Frontiers in microbiology, 14, 1250848.
22. Onallah, H., Hazan, R., & Nir-Paz, R. (2023, May). Compassionate use of bacteriophages for failed persistent infections during the first 5 years of the Israeli phage therapy center. In Open forum infectious diseases (Vol. 10, No. 5, p. ofad221). US: Oxford University Press.
23. Metsemakers, W. J., Onsea, J., Moriarty, T. F., et al. (2023). Bacteriophage therapy for human musculoskeletal and skin/soft tissue infections. Clinical Microbiology and Infection, 29(6), 695-701.
24. Law, N., Logan, C., Yung, G., et al. (2019). Successful adjunctive use of bacteriophage therapy for treatment of multidrug-resistant Pseudomonas aeruginosa infection in a cystic fibrosis patient. Infection, 47, 665-668.
25. Al-Anany, A. M., Hooey, P. B., Cook, J. D., et al. (2023). Phage therapy in the management of urinary tract infections: a comprehensive systematic review. Phage, 4(3), 112-127.
26. Venhorst, J., van der Vossen, J. M., & Agamennone, V. (2022). Battling enteropathogenic Clostridia: phage therapy for Clostridioides difficile and Clostridium perfringens. Frontiers in Microbiology, 13, 891790.
27. Kovacs, C. J., Rapp, E. M., McKenzie, S. M., et al. (2024). Disruption of biofilm by bacteriophages in clinically relevant settings. Military Medicine, 189(5-6), e1294-e1302.
28. Gigante, A., & Atterbury, R. J. (2019). Veterinary use of bacteriophage therapy in intensively-reared livestock. Virology journal, 16(1), 155.
29. Culot, A., Grosset, N., & Gautier, M. (2019). Overcoming the challenges of phage therapy for industrial aquaculture: A review. Aquaculture, 513, 734423.
30. Korniienko, N., Kharina, A., Zrelovs, N., et al. (2022). Isolation and characterization of two lytic phages efficient against phytopathogenic bacteria from Pseudomonas and Xanthomonas genera. Frontiers in microbiology, 13, 853593.
31. Mozaffari, P., Berizi, E., Hosseinzadeh, S., et al. (2022). Isolation and characterization of E. coli O157: H7 novel bacteriophage for controlling this food-borne pathogen. Virus Research, 315, 198754.
32. Rosenberg, E., Bittan‐Banin, G., Sharon, G., et al. (2010). The phage‐driven microbial loop in petroleum bioremediation. Microbial biotechnology, 3(4), 467-472.
33. Khambhati, K., Bhattacharjee, G., Gohil, N., et al. (2023). Phage engineering and phage‐assisted CRISPR‐Cas delivery to combat multidrug‐resistant pathogens. Bioengineering & Translational Medicine, 8(2), e10381.
34. Loh, B., Gondil, V. S., Manohar, P., et al. (2021). Encapsulation and delivery of therapeutic phages. Applied and Environmental Microbiology, 87(5), e01979-20.
35. Wang, X., Xie, Z., Zhao, J., et al. (2021). Prospects of inhaled phage therapy for combatting pulmonary infections. Frontiers in Cellular and Infection Microbiology, 11, 758392.
