The Science of Misfolding: Understanding Protein Aggregation and Amyloid Formation

Protein Misfolding

 FAQs

1. Can lifestyle or environmental factors influence the risk of protein misfolding disorders?

Yes, environmental stresses such as high temperature, changes in pH, oxidative stress, and aging can all increase the likelihood of protein misfolding. Additionally, an imbalanced gut microbiome may contribute to the risk, especially in neurodegenerative conditions.

2. Are all protein aggregates harmful to cells?

Not necessarily. While some aggregates, especially small soluble oligomers, are highly toxic, larger inclusion bodies may actually sequester toxic species and serve a protective role by limiting their interaction with other cellular components.

3. What role do cell membranes play in the toxicity of misfolded proteins?

Misfolded proteins and their aggregates can interact with cell membranes, causing damage such as membrane permeabilization, lipid extraction, or destabilization, which can lead to cell death.

Reference

1. Dill, K. A., Ozkan, S. B., Shell, M. S., et al. (2008). The protein folding problem. Annu. Rev. Biophys.37(1), 289-316.

2. Greenwald, J., & Riek, R. (2010). Biology of amyloid: structure, function, and regulation. Structure18(10), 1244-1260.

3. Kammerer, R. A., Schulthess, T., Landwehr, R., et al. (1998). An autonomous folding unit mediates the assembly of two-stranded coiled coils. Proceedings of the National Academy of Sciences95(23), 13419-13424.

4. Ciechanover, A., & Kwon, Y. T. (2017). Protein quality control by molecular chaperones in neurodegeneration. Frontiers in neuroscience11, 185.

5. Lackie, R. E., Maciejewski, A., Ostapchenko, V. G., et al. (2017). The Hsp70/Hsp90 chaperone machinery in neurodegenerative diseases. Frontiers in neuroscience11, 254.

6. Sweeney, P., Park, H., Baumann, M., et al. (2017). Protein misfolding in neurodegenerative diseases: implications and strategies. Translational neurodegeneration6, 1-13.

7. Denny, R. A., Gavrin, L. K., & Saiah, E. (2013). Recent developments in targeting protein misfolding diseases. Bioorganic & medicinal chemistry letters23(7), 1935-1944.

8. Weids, A. J., Ibstedt, S., Tamás, M. J., et al. (2016). Distinct stress conditions result in aggregation of proteins with similar properties. Scientific reports6(1), 24554.

9. Santra, M., Dill, K. A., & De Graff, A. M. (2019). Proteostasis collapse is a driver of cell aging and death. Proceedings of the National Academy of Sciences116(44), 22173-22178.

10. Bigi, A., Lombardo, E., Cascella, R., et al. (2023). The toxicity of protein aggregates: new insights into the mechanisms. International Journal of Molecular Sciences24(9), 7974.

11. Soto, C., & Pritzkow, S. (2018). Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases. Nature neuroscience21(10), 1332-1340.

12. Rinauro, D. J., Chiti, F., Vendruscolo, M., et al. Misfolded protein oligomers: Mechanisms of formation, cytotoxic effects, and pharmacological approaches against protein misfolding diseases. Molecular Neurodegeneration19(1), 20.

13. Fitzpatrick, A. W., Debelouchina, G. T., Bayro, M. J., et al. (2013). Atomic structure and hierarchical assembly of a cross-β amyloid fibril. Proceedings of the National Academy of Sciences110(14), 5468-5473.

14. Xue, C., Lin, T. Y., Chang, D., et al. (2017). Thioflavin T as an amyloid dye: fibril quantification, optimal concentration and effect on aggregation. Royal Society open science4(1), 160696.

15. Cazzaniga, G., Bolognesi, M. M., Stefania, M. D., et al. (2023). Congo red staining in digital pathology: the streamlined pipeline for amyloid detection through Congo red fluorescence digital analysis. Laboratory Investigation103(11), 100243.

16. Atik, A., Stewart, T., & Zhang, J. (2016). Alpha‐synuclein as a biomarker for Parkinson’s disease. Brain pathology26(3), 410-418.

17. Lue, L. F., Guerra, A., & Walker, D. G. (2017). Amyloid beta and tau as Alzheimer’s disease blood biomarkers: promise from new technologies. Neurology and therapy6, 25-36.

18. Wulf, M. A., Senatore, A., & Aguzzi, A. (2017). The biological function of the cellular prion protein: an update. BMC biology15, 1-13.

19. Wanker, E. E., Ast, A., Schindler, F., et al. (2019). The pathobiology of perturbed mutant huntingtin protein–protein interactions in Huntington’s disease. Journal of Neurochemistry151(4), 507-519.

20. Dubnikov, T., Ben-Gedalya, T., & Cohen, E. (2017). Protein quality control in health and disease. Cold Spring Harbor Perspectives in Biology9(3), a023523.

21. Pohl, C., & Dikic, I. (2019). Cellular quality control by the ubiquitin-proteasome system and autophagy. Science366(6467), 818-822.

22. Kenney, D. L., & Benarroch, E. E. (2015). The autophagy-lysosomal pathway: General concepts and clinical implications. Neurology85(7), 634-645.

23. Spires, T. L., & Hyman, Β. Τ. (2004). Neuronal structure is altered by amyloid plaques. Reviews in the neurosciences15(4), 267-278.

24. Parodi-Rullán, R., Sone, J. Y., & Fossati, S. (2019). Endothelial mitochondrial dysfunction in cerebral amyloid angiopathy and Alzheimer’s disease. Journal of Alzheimer’s disease72(4), 1019-1039.

25. Marsh, J., & Alifragis, P. (2018). Synaptic dysfunction in Alzheimer’s disease: the effects of amyloid beta on synaptic vesicle dynamics as a novel target for therapeutic intervention. Neural Regeneration Research13(4), 616.

26. Willbold, D., Strodel, B., Schröder, G. F., et al. (2021). Amyloid-type protein aggregation and prion-like properties of amyloids. Chemical reviews121(13), 8285-8307.

27. Valle, J. (2025). Biofilm-associated proteins: from the gut biofilms to neurodegeneration. Gut Microbes17(1), 2461721.

28. Doig, A. J., & Derreumaux, P. (2015). Inhibition of protein aggregation and amyloid formation by small molecules. Current opinion in structural biology30, 50-56.

29. Weihofen, A., Liu, Y., Arndt, J. W., et al. (2019). Development of an aggregate-selective, human-derived α-synuclein antibody BIIB054 that ameliorates disease phenotypes in Parkinson’s disease models. Neurobiology of disease124, 276-288.

30. Behl, T., Kaur, I., Fratila, O., et al. (2020). Exploring the potential of therapeutic agents targeted towards mitigating the events associated with amyloid-β cascade in Alzheimer’s disease. International journal of molecular sciences21(20), 7443.

Pages: 1 2