FAQs
1. Are there lifestyle changes that can help prevent neurodegenerative diseases?
Yes, evidence suggests that regular physical activity, a balanced diet, cognitive engagement, and good sleep hygiene may lower the risk or delay the onset of neurodegenerative conditions.
2. Can neurodegenerative diseases be detected before symptoms appear?
Emerging research on biomarkers and advanced imaging is making it possible to identify changes in the brain years before clinical symptoms develop, offering hope for earlier intervention.
3. Are there differences in how neurodegenerative diseases affect men and women?
Yes, some diseases like Alzheimer’s are more prevalent in women, while others like Parkinson’s are more common in men. Research is ongoing to understand the biological and environmental reasons behind these differences.
4. What is the role of environmental toxins in neurodegeneration?
Exposure to certain pesticides, heavy metals, and industrial chemicals has been linked to an increased risk of diseases like Parkinson’s and ALS, highlighting the importance of environmental health.
Reference
1. Wyss-Coray, T. (2016). Ageing, neurodegeneration and brain rejuvenation. Nature, 539(7628), 180-186.
2. Scheltens, P., De Strooper, B., Kivipelto, M., et al. (2021). Alzheimer’s disease. The Lancet, 397(10284), 1577-1590.
3. Sadigh-Eteghad, S., Sabermarouf, B., Majdi, A., et al. (2015). Amyloid-beta: a crucial factor in Alzheimer’s disease. Medical principles and practice, 24(1), 1-10.
4. Bloem, B. R., Okun, M. S., & Klein, C. (2021). Parkinson’s disease. The Lancet, 397(10291), 2284-2303.
5. Atik, A., Stewart, T., & Zhang, J. (2016). Alpha‐synuclein as a biomarker for Parkinson’s disease. Brain pathology, 26(3), 410-418.
6. Masrori, P., & Van Damme, P. (2020). Amyotrophic lateral sclerosis: a clinical review. European journal of neurology, 27(10), 1918-1929.
7. McColgan, P., & Tabrizi, S. J. (2018). Huntington’s disease: a clinical review. European journal of neurology, 25(1), 24-34.
8. Olney, N. T., Spina, S., & Miller, B. L. (2017). Frontotemporal dementia. Neurologic clinics, 35(2), 339.
9. Dobson, R., & Giovannoni, G. (2019). Multiple sclerosis–a review. European journal of neurology, 26(1), 27-40.
10. Geschwind, M. D. (2015). Prion diseases. CONTINUUM: Lifelong Learning in Neurology, 21(6), 1612-1638.
11. Soto, C., & Pritzkow, S. (2018). Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases. Nature neuroscience, 21(10), 1332-1340.
12. Moda, F., Ciullini, A., Dellarole, I., et al. (2023). Secondary protein aggregates in neurodegenerative diseases: almost the rule rather than the exception. FRONTIERS IN BIOSCIENCE, 28(10), 1-14.
13. Valle, J. (2025). Biofilm-associated proteins: from the gut biofilms to neurodegeneration. Gut Microbes, 17(1), 2461721.
14. Vergara, R. C., Jaramillo-Riveri, S., Luarte, A., et al. (2019). The energy homeostasis principle: neuronal energy regulation drives local network dynamics generating behavior. Frontiers in computational neuroscience, 13, 49.
15. Cenini, G., Lloret, A., & Cascella, R. (2019). Oxidative stress in neurodegenerative diseases: from a mitochondrial point of view. Oxidative medicine and cellular longevity, 2019(1), 2105607.
16. Angelova, P. R., & Abramov, A. Y. (2018). Role of mitochondrial ROS in the brain: from physiology to neurodegeneration. FEBS letters, 592(5), 692-702.
17. Lopez‐Ortiz, A. O., & Eyo, U. B. (2024). Astrocytes and microglia in the coordination of CNS development and homeostasis. Journal of Neurochemistry, 168(10), 3599-3614.
18. Ding, Z. B., Song, L. J., Wang, Q., et al. (2021). Astrocytes: a double-edged sword in neurodegenerative diseases. Neural regeneration research, 16(9), 1702-1710.
19. Patel, A. R., Ritzel, R., McCullough, L. D., et al. (2013). Microglia and ischemic stroke: a double-edged sword. International journal of physiology, pathophysiology and pharmacology, 5(2), 73.
20. Kwon, H. S., & Koh, S. H. (2020). Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Translational neurodegeneration, 9(1), 42.
21. Oddo, S. (2008). The ubiquitin‐proteasome system in Alzheimer’s disease. Journal of cellular and molecular medicine, 12(2), 363-373.
22. Martini-Stoica, H., Xu, Y., Ballabio, A., et al. (2016). The autophagy–lysosomal pathway in neurodegeneration: a TFEB perspective. Trends in neurosciences, 39(4), 221-234.
23. Tzioras, M., McGeachan, R. I., Durrant, C. S., et al. (2023). Synaptic degeneration in Alzheimer disease. Nature Reviews Neurology, 19(1), 19-38.
24. Morfini, G. A., Burns, M., Binder, L. I., et al. (2009). Axonal transport defects in neurodegenerative diseases. Journal of Neuroscience, 29(41), 12776-12786.
25. Lanoiselée, H. M., Nicolas, G., Wallon, D., et al. (2017). APP, PSEN1, and PSEN2 mutations in early-onset Alzheimer disease: A genetic screening study of familial and sporadic cases. PLoS medicine, 14(3), e1002270.
26. Chen, Y., Gu, X., Ou, R., et al. (2020). Evaluating the role of SNCA, LRRK2, and GBA in Chinese patients with early‐onset Parkinson’s disease. Movement Disorders, 35(11), 2046-2055.
27. Forsberg, K., Graffmo, K., Pakkenberg, B., et al. (2019). Misfolded SOD1 inclusions in patients with mutations in C9orf72 and other ALS/FTD-associated genes. Journal of Neurology, Neurosurgery & Psychiatry, 90(8), 861-869.
28. Safieh, M., Korczyn, A. D., & Michaelson, D. M. (2019). ApoE4: an emerging therapeutic target for Alzheimer’s disease. BMC medicine, 17, 1-17.
29. Cannon, J. R., & Greenamyre, J. T. (2011). The role of environmental exposures in neurodegeneration and neurodegenerative diseases. Toxicological Sciences, 124(2), 225-250.
30. Sanghai, N., Vuong, B., Burak Berk, A., et al. (2024). Current small molecule–based medicinal chemistry approaches for neurodegeneration therapeutics. ChemMedChem, 19(9), e202300705.
31. Messer, A., & Butler, D. C. (2020). Optimizing intracellular antibodies (intrabodies/nanobodies) to treat neurodegenerative disorders. Neurobiology of disease, 134, 104619.
32. Sun, J., & Roy, S. (2021). Gene-based therapies for neurodegenerative diseases. Nature neuroscience, 24(3), 297-311.
33. Porensky, P. N., & Burghes, A. H. (2013). Antisense oligonucleotides for the treatment of spinal muscular atrophy. Human gene therapy, 24(5), 489-498.
34. Shin, J. W., & Lee, J. M. (2018). The prospects of CRISPR-based genome engineering in the treatment of neurodegenerative disorders. Therapeutic advances in neurological disorders, 11, 1756285617741837.
35. Van Dyck, C. H. (2018). Anti-amyloid-β monoclonal antibodies for Alzheimer’s disease: pitfalls and promise. Biological psychiatry, 83(4), 311-319.
36. Luo, W., Liu, W., Hu, X., et al. (2015). Microglial internalization and degradation of pathological tau is enhanced by an anti-tau monoclonal antibody. Scientific reports, 5(1), 11161.
37. Vaikath, N. N., Hmila, I., Gupta, V., et al. (2019). Antibodies against alpha‐synuclein: tools and therapies. Journal of neurochemistry, 150(5), 612-625.
38. Ali, R., Gupta, G. D., & Chawla, P. A. (2022). Aducanumab: A new hope in Alzheimer’s Disease. Health Sciences Review, 4, 100039.
39. Muzio, L., Viotti, A., & Martino, G. (2021). Microglia in neuroinflammation and neurodegeneration: from understanding to therapy. Frontiers in neuroscience, 15, 742065.
40. Caldwell, C. C., Yao, J., & Brinton, R. D. (2015). Targeting the prodromal stage of Alzheimer’s disease: bioenergetic and mitochondrial opportunities. Neurotherapeutics, 12(1), 66-80.
41. Lunn, J. S., Sakowski, S. A., Hur, J., & Feldman, E. L. (2011). Stem cell technology for neurodegenerative diseases. Annals of neurology, 70(3), 353-361.
42. Wang, J., Hu, W. W., Jiang, Z., et al. (2020). Advances in treatment of neurodegenerative diseases: perspectives for combination of stem cells with neurotrophic factors. World journal of stem cells, 12(5), 323.
43. Young, P. N., Estarellas, M., Coomans, E., et al. (2020). Imaging biomarkers in neurodegeneration: current and future practices. Alzheimer’s research & therapy, 12, 1-17.
44. Zhu, X., Li, B., Lou, P., et al. (2021). The relationship between the gut microbiome and neurodegenerative diseases. Neuroscience bulletin, 37(10), 1510-1522.
45. Stefano, G. B. (2023). Artificial intelligence as a tool for the diagnosis and treatment of neurodegenerative diseases. Brain Sciences, 13(6), 938.
46. Saraiva, C., Praça, C., Ferreira, R., et al. (2016). Nanoparticle-mediated brain drug delivery: Overcoming blood–brain barrier to treat neurodegenerative diseases. Journal of controlled release, 235, 34-47.
47. Noble, W., & Burns, M. P. (2010). Challenges in neurodegeneration research. Frontiers in psychiatry, 1, 7.
48. Chen, H. I., Song, H., & Ming, G. L. (2019). Applications of human brain organoids to clinical problems. Developmental Dynamics, 248(1), 53-64.
49. Sabitha, K. R., Shetty, A. K., & Upadhya, D. (2021). Patient-derived iPSC modeling of rare neurodevelopmental disorders: Molecular pathophysiology and prospective therapies. Neuroscience & Biobehavioral Reviews, 121, 201-219.
50. Khandia, R., Gurjar, P., Romashchenko, V., et al. (2024). Recent advances in stem cell therapy: efficacy, ethics, safety concerns, and future directions focusing on neurodegenerative disorders–a review. International Journal of Surgery, 110(10), 6367-6381.
51. Orr, H. T., & Zoghbi, H. Y. (2000). Reversing neurodegeneration: a promise unfolds. Cell, 101(1), 1-4.
