Nanomedicine: Where Medicine Meets the Molecular Frontier

Nanomedicine

FAQs

1. What are the long-term safety concerns regarding nanoparticles in the body?

Long-term safety concerns primarily involve potential chronic toxicity and accumulation of nanoparticles in organs, which is addressed through rigorous biodegradable designs and extensive testing.

2. Does nanomedicine have potential in treating neurodegenerative diseases?

Yes, nanomedicine shows great potential for neurodegenerative diseases. It can uniquely overcome the highly restrictive blood-brain barrier (BBB), which prevents most drugs from reaching the brain effectively. This allows for targeted delivery of therapies directly to the brain, which is crucial for effective treatment.

3. What are some highly experimental or speculative future applications of nanomedicine?

Highly experimental future applications include self-replicating nanobots for internal repairs and advanced bio-hybrid systems that enhance biological functions.

4. What economic barriers hinder widespread access to nanomedicines?

Significant economic barriers include high R&D and manufacturing costs, which lead to high prices and limit widespread accessibility, especially in lower-income regions.

Reference

1. Chen, G., Roy, I., Yang, C., et al. (2016). Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy. Chemical reviews116(5), 2826-2885.

2. Riehemann, K., Schneider, S. W., Luger, T. A., et al. (2009). Nanomedicine—challenge and perspectives. Angewandte Chemie International Edition48(5), 872-897.

3. Chithra, P. G., Abraham, P., George, J. S., et al. (2022). Nanocoatings: Universal antiviral surface solution against COVID-19. Progress in organic coatings163, 106670.

4. Tian, X., Chong, Y., & Ge, C. (2020). Understanding the nano–bio interactions and the corresponding biological responses. Frontiers in chemistry8, 446.

5. Gawali, P., Saraswat, A., Bhide, S., et al. (2023). Human solid tumors and clinical relevance of the enhanced permeation and retention effect: a ‘golden gate’for nanomedicine in preclinical studies?. Nanomedicine18(2), 169-190.

6. Wu, X., Chen, J., Wu, M., et al. (2015). Aptamers: active targeting ligands for cancer diagnosis and therapy. Theranostics5(4), 322.

7. Lu, Y., & Liu, J. (2007). Smart nanomaterials inspired by biology: dynamic assembly of error-free nanomaterials in response to multiple chemical and biological stimuli. Accounts of chemical research40(5), 315-323.

8. Manzari, M. T., Shamay, Y., Kiguchi, H., et al. (2021). Targeted drug delivery strategies for precision medicines. Nature Reviews Materials6(4), 351-370.

9. Abbasi, H., Kouchak, M., Mirveis, Z., et al. (2022). What we need to know about liposomes as drug nanocarriers: an updated review. Advanced pharmaceutical bulletin13(1), 7.

10. Liu, Y., Li, Y., Shen, W., et al. (2024). Trend of albumin nanoparticles in oncology: a bibliometric analysis of research progress and prospects. Frontiers in Pharmacology15, 1409163.

11. Gao, Y., Joshi, M., Zhao, Z., et al. (2024). PEGylated therapeutics in the clinic. Bioengineering & translational medicine9(1), e10600.

12. Zeynalzadeh, E., Khodadadi, E., Khodadadi, E., et al. (2024). Navigating the neurological frontier: Macromolecular marvels in overcoming blood-brain barrier challenges for advanced drug delivery. Heliyon10(15) e35562.

13. Gao, Y., Wang, K., Zhang, J., et al. (2023). Multifunctional nanoparticle for cancer therapy. MedComm4(1), e187.

14. Hsu, J. C., Tang, Z., Eremina, O. E., et al. (2023). Nanomaterial-based contrast agents. Nature Reviews Methods Primers3(1), 30.

15. Fan, Q., Gao, Y., Mazur, F., et al. (2021). Nanoparticle-based colorimetric sensors to detect neurodegenerative disease biomarkers. Biomaterials Science9(21), 6983-7007.

16. Rowe, S. P., & Pomper, M. G. (2022). Molecular imaging in oncology: Current impact and future directions. CA: a cancer journal for clinicians72(4), 333-352.

17. Liu, Y., Zhang, N., Pan, J. B., et al. (2022). Bipolar electrode array for multiplexed detection of prostate cancer biomarkers. Analytical Chemistry94(6), 3005-3012.

18. Sun, L., Liu, H., Ye, Y., et al. (2023). Smart nanoparticles for cancer therapy. Signal transduction and targeted therapy8(1), 418.

19. Bhardwaj, N. (2024). Recent Trends in the Nanotechnology Based Point of Care Tests System for Infectious Diseases. In Nanotechnology in Miniaturization (pp. 25-38). Springer.

20. Lei, W., Yang, C., Wu, Y., et al. (2022). Nanocarriers surface engineered with cell membranes for cancer targeted chemotherapy. Journal of nanobiotechnology20(1), 45.

21. Sharma, A., & Bhatia, D. (2024). Programmable bionanomaterials for revolutionizing cancer immunotherapy. Biomaterials Science12(21), 5415-5432.

22. Temizoz, B., Kuroda, E., & Ishii, K. J. (2016). Vaccine adjuvants as potential cancer immunotherapeutics. International immunology28(7), 329-338.

23. So, Y., Yim, D., Kim, H. K., et al. (2025). Functional Nanosheet Immunoswitches Reprogramming Innate Macrophages for Immunotherapy of Colorectal Cancer and Sepsis. ACS nano. 19(5), 5165-5177.

24. Gavilán, H., Avugadda, S. K., Fernández-Cabada, T., et al. (2021). Magnetic nanoparticles and clusters for magnetic hyperthermia: Optimizing their heat performance and developing combinatorial therapies to tackle cancer. Chemical Society Reviews50(20), 11614-11667.

25. Gunaydin, G., Gedik, M. E., & Ayan, S. (2021). Photodynamic therapy for the treatment and diagnosis of cancer–a review of the current clinical status. Frontiers in chemistry9, 686303.

26. Overchuk, M., Weersink, R. A., Wilson, B. C., et al. (2023). Photodynamic and photothermal therapies: synergy opportunities for nanomedicine. ACS nano17(9), 7979-8003.

27. Li, H., Cai, X., Yi, T., et al. (2022). Tumor microenvironment responsive Mn3O4 nanoplatform for in vivo real-time monitoring of drug resistance and photothermal/chemodynamic synergistic therapy of gastric cancer. Journal of Nanobiotechnology20(1), 240.

28. Song, Y., Kong, H., Oh, S., et al. (2025). Plant-derived extracellular vesicles as nanocarriers for combination therapy enhancing paclitaxel-based regimens in breast cancer. BMB reports58(2), 53.

29. Yang, Q. Q., Shao, Y. X., Zhang, L. Z., et al. (2018). Therapeutic strategies for flexor tendon healing by nanoparticle-mediated co-delivery of bFGF and VEGFA genes. Colloids and S Ahmadian, E., Eftekhari, A., Janas, D., & Vahedi, P. (2023). Nanofiber scaffolds based on extracellular matrix for articular cartilage engineering: a perspective. Nanotheranostics, 7(1), 61. urfaces B: Biointerfaces164, 165-176.

30. Ahmadian, E., Eftekhari, A., Janas, D., et al. (2023). Nanofiber scaffolds based on extracellular matrix for articular cartilage engineering: a perspective. Nanotheranostics7(1), 61.

31. Wei, H., Cui, J., Lin, K., et al. (2022). Recent advances in smart stimuli-responsive biomaterials for bone therapeutics and regeneration. Bone research10(1), 17.

32.  Makabenta, J. M. V., Nabawy, A., Li, C. H., et al. (2021). Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections. Nature Reviews Microbiology19(1), 23-36.

33. Wu, Y., Yu, S., & de Lázaro, I. (2024). Advances in lipid nanoparticle mRNA therapeutics beyond COVID-19 vaccines. Nanoscale. 16, 6820-6836.

34. Jackman, J. A., Lee, J., & Cho, N. J. (2016). Nanomedicine for infectious disease applications: innovation towards broad‐spectrum treatment of viral infections. Small12(9), 1133-1139.

35. Mangla, B., Javed, S., Sultan, M. H., et al. (2022). Nanocarriers-assisted needle-free vaccine delivery through oral and intranasal transmucosal routes: A novel therapeutic conduit. Frontiers in Pharmacology12, 757761.

36. Zhou, L., Xiong, Y., Dwivedy, A., et al. (2024). Bioinspired designer DNA NanoGripper for virus sensing and potential inhibition. Science Robotics9(96), eadi2084.

37. Xiao, Y., Huang, Y., Xie, M., et al. (2024). Immunoregulatory nanomedicine for respiratory infections. Nature Reviews Bioengineering2(3), 244-259.

38. Adabi, M., Naghibzadeh, M., Adabi, M., et al. (2017). Biocompatibility and nanostructured materials: applications in nanomedicine. Artificial cells, nanomedicine, and biotechnology45(4), 833-842.

39. Liu, X., & Meng, H. (2021). Consideration for the scale‐up manufacture of nanotherapeutics—A critical step for technology transfer. View2(5), 20200190.

40. Souto, E. B., Blanco-Llamero, C., Krambeck, K., et al. (2024). Regulatory insights into nanomedicine and gene vaccine innovation: Safety assessment, challenges, and regulatory perspectives. Acta biomaterialia. 180, 1-17.

41. Moss, D. M., & Siccardi, M. (2014). Optimizing nanomedicine pharmacokinetics using physiologically based pharmacokinetics modelling. British journal of pharmacology171(17), 3963-3979.

42. Sharifi, S., Reuel, N., Kallmyer, N., et al. (2022). The issue of reliability and repeatability of analytical measurement in industrial and academic nanomedicine. ACS nano17(1), 4-11.

43. Wasti, S., Lee, I. H., Kim, S., et al. (2023). Ethical and legal challenges in nanomedical innovations: a scoping review. Frontiers in Genetics14, 1163392.

44. Clack, K., Soda, N., Kasetsirikul, S., et al. (2023). Toward personalized nanomedicine: the critical evaluation of micro and nanodevices for cancer biomarker analysis in liquid biopsy. Small19(15), 2205856.

45. Agarwal, H., Bynum, R. C., Saleh, N., et al. (2024). Theranostic nanoparticles for detection and treatment of pancreatic cancer. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology16(4), e1983.

46. Zarepour, A., Khosravi, A., Iravani, S., et al. (2024). Biohybrid Micro/Nanorobots: Pioneering the Next Generation of Medical Technology. Advanced Healthcare Materials13(31), 2402102.

47. Heydari, S., Masoumi, N., Esmaeeli, E., et al. (2024). Artificial intelligence in nanotechnology for treatment of diseases. Journal of Drug Targeting32(10), 1247-1266.

Pages: 1 2